Sains Malaysiana 52(10)(2023): 2931-2942
http://doi.org/10.17576/jsm-2023-5210-15
Antimicrobial
Property of Photocatalytic Nanoparticles-Coated Personal Protective Equipment
(PPE) on Bacteria and Fungi
(Peralatan Pelindung Diri (PPE) bersalut Nanozarah Fotopemangkin yang Bersifat antimikrob terhadap Bakteria dan Kulat)
SUBASH NAMBIAR SREE PATHI1,
NORAZIAH MOHAMAD ZIN1,*, NURUL AMIRA ABD
RAHIM1, NUR FAIZAH ABU BAKAR1 & WONG KON KEN2
1Centre for Diagnostic,
Therapeutic and Investigative Studies, Faculty of Health Science, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Department of Microbiology
and Medical Immunology, Pre-Clinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia
Received: 3 July 2023/Accepted: 7 September 2023
Abstract
Photocatalytic nanoparticles
are new applications that can be used as coatings on surfaces through a
photocatalytic process that reacts in the presence of chemical catalysts and
light. The resulting reactive oxygen species (ROS) would damage pathogenic components
and result in antimicrobial effects. This study was conducted to evaluate the
antimicrobial properties of photocatalytic nanoparticles on personal protective
equipment (PPE), namely surgical gowns and masks. Antimicrobial testing of
photocatalytic nanoparticles against PPE inoculated with pathogens was carried
out. The growth log reduction of isolates tested on the photocatalytic
nanoparticles-coated PPE showed 100% with growth reduction exceeding 4 log against Escherichia
coli ATCC 25922 as well as Staphylococcus
aureus ATCC 25923 but less than 50% reduction against Candida albicans ATCC 10231. For 20 h incubation periods, both bacteria showed growth reduction
of at least 4 log with 99.99% of reduction. The 5 and 20 times washing effects
showed an overall reduction of 99.99%-100% againstboth bacteria but less than 99.99%
against C. albicans. Photocatalytic nanocoating produces an antimicrobial effect that helps to kill the tested pathogensnd reduce the attachment of
bacteria but not fungi, on the surface of PPE. This nanoparticle is capable of
continuous self-disinfection to reduce the number of pathogens. The number of
washing cycle also does not affect its function to reduce the number of
pathogens.
Keywords: Antimicrobial;
nanoparticle; personal protective equipment (PPE); photocatalytic
Abstrak
Nanozarah fotopemangkin adalah aplikasi baharu yang boleh digunakan sebagai salutan pada permukaan melalui proses fotokatalitik yang bertindak balas dengan kehadiran bahan pemangkin kimia dan cahaya. Spesies oksigen reaktif (ROS) yang terhasil akan merosakkan komponen patogen dan menghasilkan kesan antimikrob. Kajian ini dijalankan untuk menilai sifat antimikrob nanozarah fotokatalitik pada peralatan pelindung diri (PPE), iaitu gaun pembedahan dan pelitup muka. Ujian antimikrob nanozarah fotopemangkin pada PPE yang diinokulasi dengan patogen telah dijalankan. Pengurangan log pertumbuhan bagi pencilan yang diuji pada PPE bersalut nanozarah fotopemangkin menunjukkan 100% dengan pengurangan pertumbuhan melebihi 4 log terhadap Escherichia coli ATCC 25922 serta Staphylococcus aureus ATCC 25923 tetapi pengurangan kurang daripada 50% terhadap Candida albicans ATCC 10231. Bagi tempoh pengeraman 20 jam, kedua-dua bakteria menunjukkan pengurangan pertumbuhan sekurang-kurangnya 4 log dengan pengurangan 99.99%. Kesan 5 dan 20 kali basuhan menunjukkan pengurangan keseluruhan 99.99%-100% terhadap kedua-dua bakteria tetapi kurang daripada 99.99% terhadap C. albicans. Salutan nanozarah menghasilkan kesan antimikrob yang membantu membunuh pathogen yang dijuji dan mengurangkan perlekatan bakteria tetapi bukan kulat pada permukaan PPE. Nanozarah ini mampu melakukan pembasmian tersendiri secara berterusan untuk mengurangkan bilangan patogen. Bilangan basuhan juga tidak menjejaskan fungsinya untuk mengurangkan bilangan patogen tersebut.
Kata kunci: Antimikrob; fotopemangkin; nanozarah; peralatan perlindungan diri (PPE)
REFERENCES
Akiba, N., Hayakawa,
I., Keh, E-S. & Watanabe, A. 2006. Antifungal
effects of a tissue conditioner coating agent with TiO2 photocatalyst. Journal of Medical and Dental Sciences 52(January):
223-227. https://doi.org/10.11480/jmds.520408
Ameta, R.,
Solanki, M.S., Benjamin, S. & Ameta, S.C. 2018. Photocatalysis. In Advanced Oxidation Processes for
Wastewater Treatment: Emerging Green Chemical Technology, edited by Ameta, S.C. & Ameta, R.
Elsevier Inc. pp. 135-175. https://doi.org/10.1016/B978-0-12-810499-6.00006-1
Anita, S.,
Ramachandran, T., Rajendran, R., Koushik, C.V. & Mahalakshmi, M. 2011. A
study of the antimicrobial property of encapsulated copper oxide nanoparticles
on cotton fabric. Textile Research Journal 81(10): 1081-1088.
https://doi.org/10.1177/0040517510397577
Biologicalprep. 2021. What is log reduction and why is 99.999% so
important? BioHygiene. April 12, 2021.
Biospectrum. 2021. European Countries Adopt Indoor
Photocatalytic Nano-Coating to Fight COVID-19.
https://www.biospectrumasia.com/news/91/17939/european-countries-adopt-indoor-photocatalytic-nano-coating-to-fight-covid-19-.html
Chen, Y., Tse, W.H., Chen, L. & Zhang, J. 2015. Ag
nanoparticles-Decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and
antimicrobial properties. Nanoscale Research Letters 10: 106.
https://doi.org/10.1186/s11671-014-0712-3
Chu, M., Ponce de
Leon, S. & Hoopman, J. 2022. Extended use and
reuse of personal protective equipment in the health care setting and in the
community. International Society for Infected Diseases (ISID). September
24, 2022.
Deshmukh, S.P., Patil, S.M., Mullani, S.B. & Delekar, S.D. 2019. Silver nanoparticles as an effective
disinfectant: A review. Materials Science and Engineering C 97: 954-965.
https://doi.org/10.1016/j.msec.2018.12.102
Dorau, B., Arango, R. & Green, F. 2004. An
investigation into the potential of ionic silver as a wood preservative. Proceedings Woodframe Housing Durability and Disaster Issue
Conference, October 4-6, Aladdin Resort & Casino Las Vegas, Nevada,
USA.
Garcia-Rubio, R., de
Oliveira, H.C., Rivera, J. & Trevijano-Contador, N.
2020. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Frontiers in Microbiology 10: 2993.
https://doi.org/10.3389/fmicb.2019.02993
Hu, X., Cook, S.,
Wang, P. & Hwang, H.M. 2009. In vitro evaluation of cytotoxicity of
engineered metal oxide nanoparticles. Science of the Total Environment 407(8): 3070-3072. https://doi.org/10.1016/j.scitotenv.2009.01.033
Jašková, V., Hochmannová, L. & Vytřasová, J. 2013. TiO2 and ZnO nanoparticles in photocatalytic and hygienic coatings. International
Journal of Photoenergy 2013: 795060. https://doi.org/10.1155/2013/795060
Jeevani, T. 2011. Nanotextiles- A broader perspective. Journal
of Nanomedicine and Nanotechnology 2(7): 1000124. https://doi.org/10.4172/2157-7439.1000124
Jiang, W., Yang, K., Vachet, R.W. & Xing, B. 2010. Interaction between
oxide nanoparticles and biomolecules of the bacterial cell envelope as examined
by infrared spectroscopy. Langmuir 26(23): 18071-1877.
https://doi.org/10.1021/la103738e
Kim, K.J., Sung,
W.S., Suh, B.K., Moon, S.K., Choi, J.S., Kim, J.G. & Lee, D.G. 2009.
Antifungal activity and mode of action of silver nano-particles
on Candida albicans. BioMetals 22(2): 235-242. https://doi.org/10.1007/s10534-008-9159-2
Kobayashi, R.K.T.
& Nakazato, G. 2020. Editorial: Nanotechnology
for antimicrobials. Frontiers in Microbiology 11: 1421.
https://doi.org/10.3389/fmicb.2020.01421
Li, Y., Leung, P.,
Yao, L., Song, Q.W. & Newton, E. 2006. Antimicrobial effect of surgical
masks coated with nanoparticles. Journal of Hospital Infection 62(1):
58-63. https://doi.org/10.1016/J.JHIN.2005.04.015
Lipovsky, A., Nitzan, Y., Gedanken, A. & Lubart, R.
2011. Antifungal activity of ZnO nanoparticles-the
role of ROS mediated cell injury. Nanotechnology 22: 105101.
https://doi.org/10.1088/0957-4484/22/10/105101
Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. 2008. The role of interparticle and
external forces in nanoparticle assembly. Nature Materials 7(7):
527-538. https://doi.org/10.1038/nmat2206
Nagarajan, R. 2008.
Nanoparticles: Building Blocks for Nanotechnology. In ACS Symposium Series 996: 2-14. American Chemical Society.
https://doi.org/10.1021/bk-2008-0996.ch001.
Omoike, A. & Chorover, J.
2004. Spectroscopic study of extracellular polymeric substances from Bacillus
subtilis: Aqueous chemistry and adsorption effects. Biomacromolecules 5(4): 1219-1230. https://doi.org/10.1021/bm034461z
Panáček, A., Kvítek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová,
N., Sharma, V.K., Nevěčná, T. & Zbořil, R. 2006. Silver colloid nanoparticles:
Synthesis, characterization, and their antibacterial activity. Journal of
Physical Chemistry B 110(33): 16248-16253.
https://doi.org/10.1021/jp063826h
Ramalingam, B., Parandhaman, T. & Das, S.K. 2016. Antibacterial effects
of biosynthesized silver nanoparticles on surface ultrastructure and
nanomechanical properties of Gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials and Interfaces 8(7): 4963-4976. https://doi.org/10.1021/acsami.6b00161
Ramsden, J. 2015.
Photocatalytic antimicrobial coatings. Nanotechnology Perceptions 11:
146-168. https://doi.org/10.4024/N12RA15A.ntp.011.03
Reddy, K.M., Feris, K., Bell, J., Wingett,
D.G., Hanley, C. & Punnoose, A. 2007. Selective
toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied
Physics Letters 90(213902): 2139021-2139023.
https://doi.org/10.1063/1.2742324
Rozhin, A., Batasheva, S., Kruychkova, M., Cherednichenko,
Y., Rozhina, E. & Fakhrullin,
R. 2021. Biogenic silver nanoparticles: Synthesis and application as
antibacterial and antifungal agents. Micromachines 12(12): 1480.
https://doi.org/10.3390/mi12121480
Shaheen, ThI., El-Naggar, M.E., Abdelgawad, A.M.
& Hebeish, A. 2016. Durable antibacterial and UV
protections of in situ synthesized zinc oxide nanoparticles onto cotton
fabrics. International Journal of Biological Macromolecules 83: 426-432.
https://doi.org/10.1016/j.ijbiomac.2015.11.003
Siddiqi, K.S.,
Rahman, A.u., Tajuddin & Husen, A. 2018. Properties of zinc oxide
nanoparticles and their activity against microbes. Nanoscale Research
Letters 13: 141. https://doi.org/10.1186/s11671-018-2532-3
Slavin, Y.N., Asnis, J., Häfeli, U.O. & Bach, H. 2017. Metal nanoparticles:
Understanding the mechanisms behind antibacterial activity. Journal of
Nanobiotechnology 15(1): 65. https://doi.org/10.1186/s12951-017-0308-z
Sudrajat, H. 2018. Superior photocatalytic activity of
polyester fabrics coated with zinc oxide from waste hot dipping zinc. Journal
of Cleaner Production 172: 1722-1729.
https://doi.org/10.1016/j.jclepro.2017.12.024
Tanner, B. 2022. Test
for Antimicrobial Activity of Photocatalytic Materials. December 6, 2022.
Tsendzughul, N.T. & Ogwu, A.A.
2019. Physicochemical aspects of the mechanisms of rapid antimicrobial
contact-Killing by sputtered silver oxide thin films under visible light. ACS
Omega 4(16): 16847-16859. https://doi.org/10.1021/acsomega.9b01856
WHO. 2020. Rational
Use of Personal Protective Equipment (PPE) for Coronavirus Disease (COVID-19):
Interim Guidance, 19 March 2020. World Health Organization.
Xing, H., Cheng, J.,
Tan, X., Zhou, C., Fang, L. & Lin, J. 2020. Ag nanoparticles-Coated cotton
fabric for durable antibacterial activity: Derived from phytic acid–Ag complex. Journal of the Textile Institute 111(6): 855-861.
https://doi.org/10.1080/00405000.2019.1668137
Zhang, G., Wang, D.,
Yan, J., Xiao, Y., Gu, W. & Zang, C. 2019. Study on the photocatalytic and
antibacterial properties of TiO2 nanoparticles-coated cotton
fabrics. Materials 12(12): 2010. https://doi.org/10.3390/ma12122010
*Corresponding author; email:
noraziah.zin@ukm.edu.my
|