Sains Malaysiana 52(10)(2023): 2931-2942

http://doi.org/10.17576/jsm-2023-5210-15

 

Antimicrobial Property of Photocatalytic Nanoparticles-Coated Personal Protective Equipment (PPE) on Bacteria and Fungi

(Peralatan Pelindung Diri (PPE) bersalut Nanozarah Fotopemangkin yang Bersifat antimikrob terhadap Bakteria dan Kulat)

 

SUBASH NAMBIAR SREE PATHI1, NORAZIAH MOHAMAD ZIN1,*, NURUL AMIRA ABD RAHIM1, NUR FAIZAH ABU BAKAR1 & WONG KON KEN2

 

1Centre for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Science, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia

2Department of Microbiology and Medical Immunology, Pre-Clinical Building, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, 56000 Cheras, Kuala Lumpur, Malaysia

 

Received: 3 July 2023/Accepted: 7 September 2023

 

Abstract

Photocatalytic nanoparticles are new applications that can be used as coatings on surfaces through a photocatalytic process that reacts in the presence of chemical catalysts and light. The resulting reactive oxygen species (ROS) would damage pathogenic components and result in antimicrobial effects. This study was conducted to evaluate the antimicrobial properties of photocatalytic nanoparticles on personal protective equipment (PPE), namely surgical gowns and masks. Antimicrobial testing of photocatalytic nanoparticles against PPE inoculated with pathogens was carried out. The growth log reduction of isolates tested on the photocatalytic nanoparticles-coated PPE showed 100% with growth reduction exceeding 4 log against Escherichia coli ATCC 25922 as well as Staphylococcus aureus ATCC 25923 but less than 50% reduction against Candida albicans ATCC 10231. For 20 h incubation periods, both bacteria showed growth reduction of at least 4 log with 99.99% of reduction. The 5 and 20 times washing effects showed an overall reduction of 99.99%-100% against both bacteria but less than 99.99% against C. albicans. Photocatalytic nanocoating produces an antimicrobial effect that helps to kill the tested pathogens and reduce the attachment of bacteria but not fungi, on the surface of PPE. This nanoparticle is capable of continuous self-disinfection to reduce the number of pathogens. The number of washing cycle also does not affect its function to reduce the number of pathogens.

 

Keywords: Antimicrobial; nanoparticle; personal protective equipment (PPE); photocatalytic

 

Abstrak

Nanozarah fotopemangkin adalah aplikasi baharu yang boleh digunakan sebagai salutan pada permukaan melalui proses fotokatalitik yang bertindak balas dengan kehadiran bahan pemangkin kimia dan cahaya. Spesies oksigen reaktif (ROS) yang terhasil akan merosakkan komponen patogen dan menghasilkan kesan antimikrob. Kajian ini dijalankan untuk menilai sifat antimikrob nanozarah fotokatalitik pada peralatan pelindung diri (PPE), iaitu gaun pembedahan dan pelitup muka. Ujian antimikrob nanozarah fotopemangkin pada PPE yang diinokulasi dengan patogen telah dijalankan. Pengurangan log pertumbuhan bagi pencilan yang diuji pada PPE bersalut nanozarah fotopemangkin menunjukkan 100% dengan pengurangan pertumbuhan melebihi 4 log terhadap Escherichia coli ATCC 25922 serta Staphylococcus aureus ATCC 25923 tetapi pengurangan kurang daripada 50% terhadap Candida albicans ATCC 10231. Bagi tempoh pengeraman 20 jam, kedua-dua bakteria menunjukkan pengurangan pertumbuhan sekurang-kurangnya 4 log dengan pengurangan 99.99%. Kesan 5 dan 20 kali basuhan menunjukkan pengurangan keseluruhan 99.99%-100% terhadap kedua-dua bakteria tetapi kurang daripada 99.99% terhadap C. albicans. Salutan nanozarah menghasilkan kesan antimikrob yang membantu membunuh pathogen yang dijuji dan mengurangkan perlekatan bakteria tetapi bukan kulat pada permukaan PPE. Nanozarah ini mampu melakukan pembasmian tersendiri secara berterusan untuk mengurangkan bilangan patogen. Bilangan basuhan juga tidak menjejaskan fungsinya untuk mengurangkan bilangan patogen tersebut.

 

Kata kunci: Antimikrob; fotopemangkin; nanozarah; peralatan perlindungan diri (PPE)

 

REFERENCES

Akiba, N., Hayakawa, I., Keh, E-S. & Watanabe, A. 2006. Antifungal effects of a tissue conditioner coating agent with TiO2 photocatalyst. Journal of Medical and Dental Sciences 52(January): 223-227. https://doi.org/10.11480/jmds.520408

Ameta, R., Solanki, M.S., Benjamin, S. & Ameta, S.C. 2018. Photocatalysis. In Advanced Oxidation Processes for Wastewater Treatment: Emerging Green Chemical Technology, edited by Ameta, S.C. & Ameta, R. Elsevier Inc. pp. 135-175. https://doi.org/10.1016/B978-0-12-810499-6.00006-1

Anita, S., Ramachandran, T., Rajendran, R., Koushik, C.V. & Mahalakshmi, M. 2011. A study of the antimicrobial property of encapsulated copper oxide nanoparticles on cotton fabric. Textile Research Journal 81(10): 1081-1088. https://doi.org/10.1177/0040517510397577

Biologicalprep. 2021. What is log reduction and why is 99.999% so important? BioHygiene. April 12, 2021.

Biospectrum. 2021. European Countries Adopt Indoor Photocatalytic Nano-Coating to Fight COVID-19. https://www.biospectrumasia.com/news/91/17939/european-countries-adopt-indoor-photocatalytic-nano-coating-to-fight-covid-19-.html

Chen, Y., Tse, W.H., Chen, L. & Zhang, J. 2015. Ag nanoparticles-Decorated ZnO nanorod array on a mechanical flexible substrate with enhanced optical and antimicrobial properties. Nanoscale Research Letters 10: 106. https://doi.org/10.1186/s11671-014-0712-3

Chu, M., Ponce de Leon, S. & Hoopman, J. 2022. Extended use and reuse of personal protective equipment in the health care setting and in the community. International Society for Infected Diseases (ISID). September 24, 2022.

Deshmukh, S.P., Patil, S.M., Mullani, S.B. & Delekar, S.D. 2019. Silver nanoparticles as an effective disinfectant: A review. Materials Science and Engineering C 97: 954-965. https://doi.org/10.1016/j.msec.2018.12.102

Dorau, B., Arango, R. & Green, F. 2004. An investigation into the potential of ionic silver as a wood preservative. Proceedings Woodframe Housing Durability and Disaster Issue Conference, October 4-6, Aladdin Resort & Casino Las Vegas, Nevada, USA.

Garcia-Rubio, R., de Oliveira, H.C., Rivera, J. & Trevijano-Contador, N. 2020. The fungal cell wall: Candida, Cryptococcus, and Aspergillus species. Frontiers in Microbiology 10: 2993. https://doi.org/10.3389/fmicb.2019.02993

Hu, X., Cook, S., Wang, P. & Hwang, H.M. 2009. In vitro evaluation of cytotoxicity of engineered metal oxide nanoparticles. Science of the Total Environment 407(8): 3070-3072. https://doi.org/10.1016/j.scitotenv.2009.01.033

Jašková, V., Hochmannová, L. & Vytřasová, J. 2013. TiO2 and ZnO nanoparticles in photocatalytic and hygienic coatings. International Journal of Photoenergy 2013: 795060. https://doi.org/10.1155/2013/795060

Jeevani, T. 2011. Nanotextiles- A broader perspective. Journal of Nanomedicine and Nanotechnology 2(7): 1000124. https://doi.org/10.4172/2157-7439.1000124

Jiang, W., Yang, K., Vachet, R.W. & Xing, B. 2010. Interaction between oxide nanoparticles and biomolecules of the bacterial cell envelope as examined by infrared spectroscopy. Langmuir 26(23): 18071-1877. https://doi.org/10.1021/la103738e

Kim, K.J., Sung, W.S., Suh, B.K., Moon, S.K., Choi, J.S., Kim, J.G. & Lee, D.G. 2009. Antifungal activity and mode of action of silver nano-particles on Candida albicans. BioMetals 22(2): 235-242. https://doi.org/10.1007/s10534-008-9159-2

Kobayashi, R.K.T. & Nakazato, G. 2020. Editorial: Nanotechnology for antimicrobials. Frontiers in Microbiology 11: 1421. https://doi.org/10.3389/fmicb.2020.01421

Li, Y., Leung, P., Yao, L., Song, Q.W. & Newton, E. 2006. Antimicrobial effect of surgical masks coated with nanoparticles. Journal of Hospital Infection 62(1): 58-63. https://doi.org/10.1016/J.JHIN.2005.04.015

Lipovsky, A., Nitzan, Y., Gedanken, A. & Lubart, R. 2011. Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology 22: 105101. https://doi.org/10.1088/0957-4484/22/10/105101

Min, Y., Akbulut, M., Kristiansen, K., Golan, Y. & Israelachvili, J. 2008. The role of interparticle and external forces in nanoparticle assembly. Nature Materials 7(7): 527-538. https://doi.org/10.1038/nmat2206

Nagarajan, R. 2008. Nanoparticles: Building Blocks for Nanotechnology. In ACS Symposium Series 996: 2-14. American Chemical Society. https://doi.org/10.1021/bk-2008-0996.ch001.

Omoike, A. & Chorover, J. 2004. Spectroscopic study of extracellular polymeric substances from Bacillus subtilis: Aqueous chemistry and adsorption effects. Biomacromolecules 5(4): 1219-1230. https://doi.org/10.1021/bm034461z

Panáček, A., Kvítek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V.K., Nevěčná, T. & Zbořil, R. 2006. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. Journal of Physical Chemistry B 110(33): 16248-16253. https://doi.org/10.1021/jp063826h

Ramalingam, B., Parandhaman, T. & Das, S.K. 2016. Antibacterial effects of biosynthesized silver nanoparticles on surface ultrastructure and nanomechanical properties of Gram-negative bacteria viz. Escherichia coli and Pseudomonas aeruginosa. ACS Applied Materials and Interfaces 8(7): 4963-4976. https://doi.org/10.1021/acsami.6b00161

Ramsden, J. 2015. Photocatalytic antimicrobial coatings. Nanotechnology Perceptions 11: 146-168. https://doi.org/10.4024/N12RA15A.ntp.011.03

Reddy, K.M., Feris, K., Bell, J., Wingett, D.G., Hanley, C. & Punnoose, A. 2007. Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Applied Physics Letters 90(213902): 2139021-2139023. https://doi.org/10.1063/1.2742324

Rozhin, A., Batasheva, S., Kruychkova, M., Cherednichenko, Y., Rozhina, E. & Fakhrullin, R. 2021. Biogenic silver nanoparticles: Synthesis and application as antibacterial and antifungal agents. Micromachines 12(12): 1480. https://doi.org/10.3390/mi12121480

Shaheen, ThI., El-Naggar, M.E., Abdelgawad, A.M. & Hebeish, A. 2016. Durable antibacterial and UV protections of in situ synthesized zinc oxide nanoparticles onto cotton fabrics. International Journal of Biological Macromolecules 83: 426-432. https://doi.org/10.1016/j.ijbiomac.2015.11.003

Siddiqi, K.S., Rahman, A.u., Tajuddin & Husen, A. 2018. Properties of zinc oxide nanoparticles and their activity against microbes. Nanoscale Research Letters 13: 141. https://doi.org/10.1186/s11671-018-2532-3

Slavin, Y.N., Asnis, J., Häfeli, U.O. & Bach, H. 2017. Metal nanoparticles: Understanding the mechanisms behind antibacterial activity. Journal of Nanobiotechnology 15(1): 65. https://doi.org/10.1186/s12951-017-0308-z

Sudrajat, H. 2018. Superior photocatalytic activity of polyester fabrics coated with zinc oxide from waste hot dipping zinc. Journal of Cleaner Production 172: 1722-1729. https://doi.org/10.1016/j.jclepro.2017.12.024

Tanner, B. 2022. Test for Antimicrobial Activity of Photocatalytic Materials. December 6, 2022.

Tsendzughul, N.T. & Ogwu, A.A. 2019. Physicochemical aspects of the mechanisms of rapid antimicrobial contact-Killing by sputtered silver oxide thin films under visible light. ACS Omega 4(16): 16847-16859. https://doi.org/10.1021/acsomega.9b01856

WHO. 2020. Rational Use of Personal Protective Equipment (PPE) for Coronavirus Disease (COVID-19): Interim Guidance, 19 March 2020. World Health Organization.

Xing, H., Cheng, J., Tan, X., Zhou, C., Fang, L. & Lin, J. 2020. Ag nanoparticles-Coated cotton fabric for durable antibacterial activity: Derived from phytic acid–Ag complex. Journal of the Textile Institute 111(6): 855-861. https://doi.org/10.1080/00405000.2019.1668137

Zhang, G., Wang, D., Yan, J., Xiao, Y., Gu, W. & Zang, C. 2019. Study on the photocatalytic and antibacterial properties of TiO2 nanoparticles-coated cotton fabrics. Materials 12(12): 2010. https://doi.org/10.3390/ma12122010

 

*Corresponding author; email: noraziah.zin@ukm.edu.my

 

 

 

 

 

 

 

 

previous